
Wave Shield
Created by lady ada

Last updated on 2014-04-17 09:00:16 AM EDT

2
5
6
7

10
10
10
10
11
12
13
14
14
15
15
15
18
18
21
26
26
26
35
35
36
36
37
39
39
39

Guide Contents

Guide Contents
Overview

Ideas for what you can use it for...
FAQ
Design

Overview
Voltage regulator
SD/MMC card holder
The microcontroller/Arduino
DAC
Analog output

Make it!
Steps

Preparation
Prep
Tools

Parts
Parts list for version 1.1 only!
Parts list for version 1.0 ONLY

Solder
These are instructions for version 1.1 of the kit!
Make it

Use it!
How to use it

SD Card
Introduction
Formatting under Windows/Mac

Convert files
Intro
Check the file

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 2 of 79

40
42
42
43
45
47
48
48
49
51
51
51
51
54
55
57
58
58
58
58
61
62
63
68
68
68
68
68
69
70
70
71
71
71

Option 1. Use iTunes
Option 2. Use SoX
Option 3. Use Audacity
Step 3. Start up Audacity and open the file
Step 4. Split and Mix a stereo track
Step 5. Convert to 16 bit audio
Step 6. Convert to 22-KHz or less
Step 7. Prepare to export
Step 8. Export!

waveHC Library
Get more RAM & Flash!
A tour of dap_hc.pde
Initialize the card
Looking for files in a directory
Playing all the files
dap_hc.pde

The Play6_HC Example
Get more RAM & Flash!
A tour of play6_hc.pde
Initialize the card
Button interfacing
Playcomplete & Playfile
play6_hc.pde

AFwave Lib.
DISCONTINUED!
Get more RAM & Flash!
A tour of the AF_Wave library
Initialize the card
Looking for files
Opening a file for playing
Playing the file
Closing the file
Changing sample rate
Saving & restoring the play position

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 3 of 79

71
73
73
73
73
73
73
73
74
74
74
75
75
76
76
76
76
77
78
79

Volume adjust
Examples

Getting Stack overflow errors?
Get more RAM & Flash!
Generating speech
Sound sample library
Digital audio player
PI party!
6 buttons, 6 sounds, multiple possibilities!
Playing sound based on input
Changing the playback rate
Wave Shield Voice Changer
Volume control via software

Downloads
Arduino WaveHC Library
Arduino AF_Wave library
Demo waves
Schematics & Layout
Buy Kit
Forums

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 4 of 79

Overview

Adding quality audio to an electronic project is surprisingly difficult. People tend to end up either
using low-quality ISD chips (http://adafru.it/d89) (you might get 8Khz sampling rate for
30seconds out of these, if you're lucky!) or mucking around with trying to control a CD or MP3
player. Although it's possible to generate audio direct from a microcontroller using a PWM
output (http://adafru.it/d8a), the quality is often low and it's hard to fit a lot of music in an
EEPROM chip. You can buy an embedded MP3 player board, but they're either expensive or
difficult to use!

Here is a shield for Arduino that solves many of these problems. It can play up to 22KHz, 12bit
uncompressed audio files of any length. It's low cost, available as an easy-to-make kit. It has an
onboard DAC, filter and op-amp for high quality output. Audio files are read off of an SD/MMC
card, which are available at nearly any store. Volume can be controlled with the onboard
thumbwheel potentiometer.
Click on the play button to watch a demo of the wave shield playing assorting audio
through a small speaker.

The shield comes with an Arduino library for easy use; simply drag uncompressed wave files
onto the SD card and plug it in. Then use the library to play audio when buttons are pressed, or
when a sensor goes off, or when serial data is received, etc. Audio is played asynchronously as
an interrupt, so the Arduino can perform tasks while the audio is playing.

Can play any uncompressed 22KHz, 12bit, mono Wave (.wav) files of any size. While it
isnt CD quality, it is certainly good enough to play music, have spoken word, or audio

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 5 of 79

https://www.nuvoton.com/NuvotonMOSS/Community/ProductInfo.aspx?tp_GUID=d2589477-840d-4046-9c3a-2e0e457048b3
http://transistor-man.com/Rage_against_the_arduino.html

effects.
Output is mono, into L and R channels, standard 3.5mm headphone jack and a connection
for a speaker that is switched on when the headphones are unplugged.
Files are read off of FAT16 formatted SD/MMC card (http://adafru.it/cDF).
Included library makes playing audio easy.

While the shield has been tested and works well, here are some points to keep in mind:
The audio playback library uses 10K of flash - so if you want to use an NG arduino, you'll
need to upgrade to an Atmega168 chip.
About 600 bytes of SRAM are used to buffer the audio and keep track of file data, so
RAM-heavy projects may not work well.
The shield can't play MP3, WMA, Ogg or other compressed audio files. It can only play
uncompressed PCM/WAV files. Converting audio to WAV format (http://adafru.it/cDG) is
very easy, and is often the default format for many audio programs.
Files are stored as 8.3 name format, and can only be placed in the root directory. That
means you can only have ~512 files (but they can be any size).

Ideas for what you can use it for...
Make a portable audio player
Use the AT&T text-to-speech site to make snippets of speech that you string together
for a talking project, like..
Talking temperature sensor
Talking clock
Interfaces for sight-impared people
Doorbell that plays a cool tune
Jukebox/music-box that plays a song when its opened, or a coin is inserted
Security system that warns the intruder
Audio looper for musical effects and performances
Synthesizer with different sounds
Really freaky halloween props that scream
Display (like a point-of-sale box) that you can plug into to hear the message

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 6 of 79

sd-card
convert-files

FAQ
 Can this shield play MP3 files? What about WMA, Ogg, AAC, etc?

No, compressed audio requires either a specialized chip (which is expensive) or a very
powerful chip. The Arduino microcontroller can't uncompress MP3 on the fly and to keep the
shield inexpensive, no mp3 decoder chip is included.

For recording and playback of other file formats, see the VS1053 breakout
board (http://adafru.it/1381).
No, compressed audio requires either a specialized chip (which is expensive) or a very
powerful chip. The Arduino microcontroller can't uncompress MP3 on the fly and to keep the
shield inexpensive, no mp3 decoder chip is included.

For recording and playback of
other file formats, see the VS1053
breakout board (http://adafru.it/1381).

 What sort of audio can it play?
It can play uncompressed Wave files (.wav format). This is a standard format and pretty much
every audio program can convert your music or audio into wave format. Make sure the sample
rate is mono, 22KHz (or less) and 16-bit (or less). The user manual has instructions on how to
convert (http://adafru.it/c0l) and adjust files for optimum playback.
It can play uncompressed Wave files (.wav format). This is a standard format and pretty much
every audio program can convert your music or audio into wave format. Make sure the sample
rate is mono, 22KHz (or less) and 16-bit (or less). The user manual has instructions on how to
convert (http://adafru.it/c0l) and adjust
files for optimum playback.

 Can I play two files at once?
No, the waveshield can only play one WAV file at a time. There is no way to play two or
more wave files at one time - the Arduino is not fast enough to mix audio.
No, the waveshield can only play one WAV file at a time. There is
no way to play two or more wave files at one time - the Arduino is not fast enough to mix
audio.

 Can it play Stereo?
No, the software libraries, and hardware DAC and amplfier do not support stereo sound. You
could split the mono output into two speakers but they wont be 'true stereo.'
No, the software libraries, and hardware DAC and amplfier do not support stereo
sound. You could split the mono output into two speakers but they wont be 'true
stereo.'

 What does it sound like?
The best way to determine if the quality is good enough for your project is use Audacity and go
thru the steps in the User Manual (http://adafru.it/c0l) for converting MP3s (and other files) to
22KHz/16-bit format.
The best way to determine if the quality is good enough for your project is use Audacity and go
thru the steps in the <a href="http://learn.adafruit.com/audio-shield-for-arduino/convert-
files">User Manual (http://adafru.it/c0l) for

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 7 of 79

http://www.adafruit.com/products/1381
http://learn.adafruit.com/audio-shield-for-arduino/convert-files
http://learn.adafruit.com/audio-shield-for-arduino/convert-files

converting MP3s (and other files) to 22KHz/16-bit format.
 Can this shield record audio?

There is no hook-up for a microphone, so it will take a bit of hacking. But recording is possible
with the WaveRP library (http://adafru.it/cK5) by fat16lib.

Don't try this with an older Arduino (atmega168). You need the memory of an Atmega328 (such
as an Arduino Uno).
There is no hook-up for a microphone, so it will take a bit of hacking. But recording is possible
with the WaveRP
library (http://adafru.it/cK5) by
fat16lib.

Don't try this with an older Arduino (atmega168). You need the memory of an
Atmega328 (such as an Arduino Uno).

 What pins are used by the shield?
Pins 13, 12, 11 are always used by the SD card (they are the only pins that have a high speed
SPI interface). Then there are 5 other pins used to talk to the DAC and SD card, but they can be
set to connect to any arduino pin. However, by default, the library is configured to use pins 10
(for SD card) and pins 2, 3, 4 and 5 for the DAC. To chanage these pins requires modifying the
library - the pins are referenced by their 'hardware' pin names (ie PORTD, etc) not by arduino
pins.

That means pins 6, 7, 8, 9 and the 6 analog in pins (also known as digital i/o pins 14-20) are
available.
Pins 13, 12, 11 are always used by the SD card (they are the only
pins that have a high speed SPI interface). Then there are 5 other pins used to talk to the DAC
and SD card, but they can be set to connect to any arduino pin. However, by default, the library
is configured to use pins 10 (for SD card) and pins
2, 3, 4 and 5 for the
DAC. To chanage these pins requires modifying the library - the pins are referenced by their
'hardware' pin names (ie PORTD, etc) not by arduino pins.

That
means pins 6, 7, 8, 9 and the 6 analog in pins (also known
as digital i/o pins 14-20) are available.

 How come I cant use the PWM output on pin 9?
Timer 1 is used by the wave shield for timing, if you want to use a servo, you can use
ServoTimer2 (http://adafru.it/c0m) or a 'softservo' library.
Timer 1 is used by the wave shield for timing, if you want to use a servo, you can use <a
href="http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?
num=1230479947">ServoTimer2<span class="pdf-short-
link"> (http://adafru.it/c0m) or a 'softservo' library.

 What are LED1, LED2, R9 &amp;amp; R10 for? They're not in the instructions.
These are 'spots' for unincluded components, you can install 3mm LEDs into the slots and 1K
resistors into the matching resistor slots. Theres a solder hole next to them so you can wire up
the LEDs as indicators. There's no software in the shield library to support them, they're just
component locations.
These are 'spots' for unincluded components, you can install 3mm LEDs into the slots
and 1K resistors into the matching resistor slots. Theres a solder hole next to them so you can
wire up the LEDs as indicators. There's no software in the shield library to support them, they're

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 8 of 79

http://code.google.com/p/waverp/downloads/list
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1230479947

just component locations.
 What is CD, WP and SW?

CD is the Card Detect switch in the SD card holder, WP is the Write Protect detect switch in the
SD card holder, SW is the switch in the potentiometer. See the schematics for how these are
connected up. They are not used in any libraries, there is no example code for them. If you
want to use them they are there but are not necessary.
CD is the Card Detect switch in the SD card holder, WP is the Write Protect detect
switch in the SD card holder, SW is the switch in the potentiometer. See the schematics for how
these are connected up. They are not used in any libraries, there is no example code for them.
If you want to use them they are there but are not necessary.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 9 of 79

Design
Overview
Here is an explaination of how the wave shield works. We'll go section by section. You'll want to
refer to the schematic.

Voltage regulator
The easiest thing to understand is the 3.3V voltage regulator. This takes the 5V supply from the
Arduino and converts it to a nice 3.3V supply. This is necessary because SD/MMC cards only
work on 3.3V. If you give them 5V they'll burn out & die!

The voltage regulator used is the MCP1700-330, which can provide up to 250 mA of current.
There are 4 capacitors associated with the regulator. C1 and C2 are the input capacitors; they
stabilize the 5V input. C3 and C4 are the output capacitors, they stabilize the 3.3V output

There is a jumper that allows you to skip the regulator and use the 'built in' 3.3V supply from the
Arduino. However, it is not suggested as that supply is not guaranteed to provide the current
necessary.

SD/MMC card holder

SD/MMC cards are very popular, small, and inexpensive. The card holder is what allows you to
remove and replace the card easily. They can be removed/replaced thousands of times. The
top three 'pins' are CD, WP and COMMON_SW. CD stands for "card detect" this is a
mechanical switch that closes when the card is inserted. WP stands for "write protect," this is a
mechanical switch that closes when the card has the little side tab slid down to 'lock.'
COMMON_SW is the common connection for the two switches. We simply connect this to
ground. Thus CD and WP will be grounded when active.

At the bottom are the power supplies. There are 2 mechanical ground connections and a logic
ground. There is also the logic power connection, connected to the 3.3v regulator.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 10 of 79

In the middle are the data connections. DAT1 and DAT2 are for advanced/high-speed SD card
interfacing. We don't do this so they are left disconnected. DATA_OUT is the serial data out
from the card, which is connected to the SPI port of the Arduino. DATA_IN is the input and
SCLK is the clock input. Since they must be 3.3V and the Arduino usually sends 5V data, we
use voltage dividers (R2, R3, R4 and R5) to reduce the inputs down.

CS is the select line, used to tell the MMC that we want to send it data. This line is pulled low (to
ground) when we want to send data to the card. That means we need to make sure when we
dont have anything connected, the pin is pulled high to ~3.3V. We use R6 as the pullup and
zener diode D1 to keep the voltage at 3.3V. R1 allows the diode to bias properly when the
Arduino pulls the pin high.

The microcontroller/Arduino
The library contains a bunch of specialized code. The first part is a 'FAT16' library, this is a set
of functions that allow the chip to read the SD card, locate files and read their contents. The
method it does this by is particularly detailed and you can read the
SD/MMC (http://adafru.it/c0n) and FAT16 manuals (http://adafru.it/c0o) if you're interested.

Once it opens a file and is ready to read it, it looks through the first section of the file. If it's a
Wave file, there will be all sorts of information stored in this header that will indicate the
channels (mono/stereo/etc), bits-per-sample (8 to 32), sample rate (ie 16KHz) etc. You can
read more about the header format here (http://adafru.it/c0p). Basically, the firmware verifies
that it is mono channel, 16 or less bits-per-sample and 22KHz or less sample rate. Then it sets
up the audio interrupt that will go off sample-rate times a second. For example, if it's a 22KHz
audio sample, the interrupt will go off 22,000 times a second!

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 11 of 79

http://www.cs.ucr.edu/~amitra/sdcard/ProdManualSDCardv1.9.pdf
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/prork/prdf_fls_tllv.mspx?mfr=true
http://ccrma.stanford.edu/courses/422/projects/WaveFormat/

Image from wikipedia (http://adafru.it/c0o)

The audio is encoded in PCM format (http://adafru.it/c0q). This means "pulse Code Modulation".
Lets say it's a 16bit, 22khz wave. The audio waveform is sliced up 22,000 times a second and a
corresponding value (up to 16 bits - from 0 to 65,635) is read from the waveform, then that
value is stored in the file. Each sample is a unique value. The file is not compressed. This
means the files are very large but the quality is very very good.

The SD card can provide 512 bytes at a time. This is buffered inside the Arduino's RAM so that
we have smooth playback. (Techinally, its a double-buffer which means we read 256 bytes and
play 256 bytes, then swap.) The audio interrupt picks one sample at a time and sends the data
to the DAC (digital/analog converter).

DAC
The DAC is a very simple device. When you send it data it will convert that digital information
back into an analog signal!

You'll notice it actually doesn't get the orignal waveform perfect. The more bits of digital data,
the higher quality of audio reproduction. CDs have 16-bits per sample. While it would have
been nice to have a 16-bit DAC, the best option for this design was a 12-bit dac. (That's still
quite good.)

The microcontroller/Arduino uses the DAC_CS (chip select), DAC_CLK (data clock), DAC_DI
(data), and DAC_LATCH (convert the digital to analog) pins to send the sample data over. The
DAC also has a Vref input, this is the reference voltage that it uses to define the maximum
analog value it can generate. There is a very low low-pass filter connected to it (C6 and R8) so
that any digital noise (there is -a lot-) will not make it into the audio signal.

There is another low-pass filter connected to the output of the DAC (R7 and C8). This is for
filtering out the 'square wave' component you see in the recreated-audio wave. Even though

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 12 of 79

http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/prork/prdf_fls_tllv.mspx?mfr=true
http://en.wikipedia.org/wiki/PCM

the noise is only 1/4096'ths of the signal (about 1.2mV) it's still noise and these two
components filter out anything above 11KHz. The reason the filter cut-off frequency is 11KHz
and not 22KHz is that if you sample at 22KHz you will only be able to reproduce frequencies at
half that rate, 11KHz. This is the Nyquist (http://adafru.it/aQ3) theory. It is sneaky but true. If you
try to sample 16KHz waveform at 22KHz it will actually sound much -lower-, it will play at 6KHz (it
is 'mirrored' around 11KHz).

Analog output
Finally there is the volume control and output stage. The potentiometer acts as a simple
volume control. It simply divides down the analog signal from 5Vpp down to as low as 0Vpp.
The pot is 'audio' type which means that the voltage changes logarithmically, which our ears
interpret as linearly.

The analog signal then goes into a high-output, rail-to-rail opamp. This op-amp can provide up
to 100mA per channel. The two channels are hooked up in parallel for up to 200mA output (at
5V). This means it can provide 1/8 W into an 8ohm speaker (or 1/4 W into 4ohm speaker). This
isn't enough for a boom-box but its good for headphones and small speakers. The output is
filtered through a bypass capacitor C9 which will keep any DC voltage from going to the
speaker, which could damage it.

The headphone jack is stereo, which both mono channels connected in parallel. This gives the
most power output. There are internal switches in the jack so that when the headphones are
removed, the audio flows to the 'speaker connection' next to the jack.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 13 of 79

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

Make it!
Steps
This is a very easy kit to make, just go through each of these steps to build the kit.

1. Tools and preparation (http://adafru.it/cmj)
2. Check the parts list (http://adafru.it/cWR)
3. Solder it (http://adafru.it/cWS)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 14 of 79

http://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/preparation
http://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/parts
http://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/solder

Preparation
Prep
Learn how to solder with tons of tutorials (http://adafru.it/aTk)!

Don't forget to learn how to use your multimeter too (http://adafru.it/aOy)!

Tools
There are a few tools that are required for assembly. None of these tools are included. If you
don't have them, now would be a good time to borrow or purchase them. They are very very
handy whenever assembling/fixing/modifying electronic devices! I provide links to buy them,
but of course, you should get them where ever is most convenient/inexpensive. Many of these
parts are available in a place like Radio Shack or other (higher quality) DIY electronics stores.

Soldering iron

Any entry level 'all-in-one' soldering iron that you might find at your
local hardware store should work. As with most things in life, you get
what you pay for.

Upgrading to a higher end soldering iron setup, like theHakko FX-888
that we stock in our store (http://adafru.it/180), will make soldering
fun and easy.

Do not use a "ColdHeat" soldering iron! They are not suitable for
delicate electronics work and can damage the kit (see
here (http://adafru.it/aOo)).

Click here to buy our entry level adjustable 30W 110V soldering
iron. (http://adafru.it/180)

Click here to upgrade to a Genuine Hakko FX-888 adjustable
temperature soldering iron. (http://adafru.it/303)

Solder

You will want rosin core, 60/40 solder. Good solder is a good thing.
Bad solder leads to bridging and cold solder joints which can be
tough to find.

Click here to buy a spool of leaded solder (recommended for
beginners). (http://adafru.it/145)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 15 of 79

http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/multimeters
http://learn.adafruit.com/assets/4712
http://learn.adafruit.com/assets/5053
http://adafruit.com/products/180
http://www.epemag.wimborne.co.uk/cold-soldering2.htm
http://adafruit.com/products/180
http://adafruit.com/products/303
http://learn.adafruit.com/assets/4713
http://adafruit.com/products/145

Click here to buy a spool of lead-free solder. (http://adafru.it/734)

Multimeter

You will need a good quality basic multimeter that can measure
voltage and continuity.

Click here to buy a basic multimeter. (http://adafru.it/71)

Click here to buy a top of the line multimeter. (http://adafru.it/308)

Click here to buy a pocket multimeter. (http://adafru.it/850)

Flush Diagonal Cutters

You will need flush diagonal cutters to trim the wires and leads off of
components once you have soldered them in place.

Click here to buy our favorite cutters. (http://adafru.it/152)

Solder Sucker

Strangely enough, that's the technical term for this desoldering
vacuum tool. Useful in cleaning up mistakes, every electrical engineer
has one of these on their desk.

Click here to buy a one. (http://adafru.it/148)

Helping Third Hand With Magnifier

Not absolutely necessary but will make things go much much faster,
and it will make soldering much easier.

Pick one up here. (http://adafru.it/291)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 16 of 79

http://adafruit.com/products/734
http://learn.adafruit.com/assets/4714
http://learn.adafruit.com/assets/5054
http://learn.adafruit.com/assets/5055
http://adafruit.com/products/71
http://adafruit.com/products/308
http://adafruit.com/products/850
http://learn.adafruit.com/assets/4715
http://adafruit.com/products/152
http://learn.adafruit.com/assets/4716
http://adafruit.com/products/148
http://learn.adafruit.com/assets/4717
http://adafruit.com/products/291

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 17 of 79

Parts
Parts list for version 1.1 only!
Check to make sure your kit comes with the following parts. Sometimes we make mistakes so
double check everything and email support@adafruit.com if you need replacements!

Image Name Description
Part
information

Qty

IC1 3.3V linear voltage regulator, 250mA current
MCP1700-
3302E/TO

1

IC2 12-bit DAC MCP4921 1

TS922IN or

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 18 of 79

http://www.adafruit.com/partfinder/vreg?s%5B%5D=mcp1700#others
http://www.adafruit.com/partfinder/codec?s%5B%5D=mcp4921#dacs

IC3 High-current opamp
TS922IN or
TS922AIN

1

IC4

Level shifter for SD card

If you don't have this part you've probably
got a v1.0kit. See the parts list below.

74xx125
(e.g.
74AHC125)

1

SD/MMC card holder
Tyco
2041021-3

1

TM1

10K or 50K Audio thumbwheel
potentiometer.

Includes pot, thumbwheel and tiny screw.

311-
1204F-10K

1

X1 Stereo headphone jack with switches.
STX-3100-
5N

1

R7
1/4W 5% 1.5K resistor

Brown Green Red Gold
Generic 1

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 19 of 79

http://www.adafruit.com/partfinder/ic?s%5B%5D=ts922#op_amps
http://www.adafruit.com/partfinder/ic?s%5B%5D=74ahc125n#logic
http://www.adafruit.com/partfinder/connectors#memory_card_connectors
http://www.adafruit.com/partfinder/pots?s%5B%5D=311-1204f-10k
http://www.adafruit.com/partfinder/connectors?s%5B%5D=stx-3100#audiovideo
http://www.adafruit.com/partfinder/resistors#w_5_carbon

R6
1/4W 5% 10K resistor

Brown, Black, Orange, Gold
Generic 1

R8
1/4W 5% 100K resistor

Brown, Black, Yellow, Gold
Generic 1

C8

0.01uF ceramic capacitor (103)

May look deceptively like the 0.1uF ceramic
capacitors! Lately has been shipped in an
'axial' (not 'radial' package. See instructions
for details.

Mouser 1

C2,
C3,
C5,
C6,
C7

0.1uF ceramic capacitor (104)

Looks deceptively like the 0.01uF ceramic
capacitor!

Generic 5

C1,
C4,
C9

100uF / 6V or greater capacitor Generic 3

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 20 of 79

http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://mouser.com/ProductDetail/AVX/SA105E103MAR/?qs=sGAEpiMZZMuAYrNc52CMZGHh0l%2fWLiqmHJkpK96EGko%3d
http://www.adafruit.com/partfinder/caps?s%5B%5D=0.1uf %2F 50v#ceramic_capacitors
http://www.adafruit.com/partfinder/caps#electrolytic

RESET 6mm tactile switch B3F-1000 1

ICSP 6-pin ICSP header Generic 1

36 pin male header (1x36) Generic 1

PCB Circuit board with "v1.1" on it.
Adafruit
Industries

1

Parts list for version 1.0 ONLY
Check to make sure your kit comes with the following parts.Sometimes we make mistakes so
double check everything and email support@adafruit.com if you need replacements!

Image Name Description
Part
Information

Qty

IC1 3.3V linear voltage regulator, 250mA current
MCP1700-
3302E/TO

1

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 21 of 79

http://www.adafruit.com/partfinder/switches?s%5B%5D=6mm tactile#pushbuttons
http://www.adafruit.com/partfinder/header?s%5B%5D=unshrouded 2x3#male_header
http://www.adafruit.com/partfinder/header#male_header
http://www.adafruit.com/
http://www.adafruit.com/partfinder/vreg?s%5B%5D=mcp1700#others

IC2 12-bit DAC MCP4921 1

IC3 High-current opmap
TS922IN or
TS922AIN

1

SD/MMC card holder
Tyco
2041021-3

1

TM1
10K Audio thumbwheel potentiometer.

Includes pot, thumbwheel and tiny screw.

311-
1204F-10K

1

X1 Stereo headphone jack with switches.
STX-3100-
5N

1

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 22 of 79

http://www.adafruit.com/partfinder/codec?s%5B%5D=mcp4921#dacs
http://www.adafruit.com/partfinder/ic?s%5B%5D=ts922#op_amps
http://www.adafruit.com/partfinder/connectors#memory_card_connectors
http://www.adafruit.com/partfinder/pots?s%5B%5D=311-1204f-10k
http://www.adafruit.com/partfinder/connectors?s%5B%5D=stx-3100#audiovideo

R1

1/4W 5% 1.0K resistor

Brown, Black, Red, Gold

If you don't have this part, you've probably
got a v1.1 kit. See the parts list above.

Generic 1

R7
1/4W 5% 1.5K resistor

Brown, Green, Red, Gold
Generic 1

R3,
R5, R6

1/4W 5% 4.7K resistor

Yellow, Purple, Red, Gold

If you don't have this part, you've probably
got a v1.1 kit. See the parts list above.

Generic 3

R2, R4
1/4W 5% 10K resistor

Brown, Black, Orange, Gold
Generic 2

R8
1/4W 5% 100K resistor

Brown, Black, Yellow, Gold
Generic 1

C8

0.01uF ceramic capacitor (103)

May look deceptively like the 0.1uF ceramic
capacitors! Lately has been shipped in an
'axial' (not 'radial' package. See instructions
for details.

Mouser 1

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 23 of 79

http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://www.adafruit.com/partfinder/resistors#w_5_carbon
http://mouser.com/ProductDetail/AVX/SA105E103MAR/?qs=sGAEpiMZZMuAYrNc52CMZGHh0l%2fWLiqmHJkpK96EGko%3d

C2,
C3,
C5,
C6,
C7

0.1uF ceramic capacitor (104)

Looks deceptively like the 0.01uF ceramic
capacitor!

Generic 5

C1,
C4,
C9

100uF / 6V capacitor Generic 3

D1

3.6V Zener diode

If you don't have this part, you've probably
got a v1.1 kit. See the parts list above.

1N5227B 1

RESET 6mm tactile switch B3F-1000 1

ICSP 6-pin ICSP header Generic 1

36 pin male header (1x36) Generic 1

Adafruit

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 24 of 79

http://www.adafruit.com/partfinder/caps?s%5B%5D=0.1uf %2F 50v#ceramic_capacitors
http://www.adafruit.com/partfinder/caps#electrolytic
http://www.adafruit.com/partfinder/diodes?s%5B%5D=1n5227b#zener
http://www.adafruit.com/partfinder/switches?s%5B%5D=6mm tactile#pushbuttons
http://www.adafruit.com/partfinder/header?s%5B%5D=unshrouded 2x3#male_header
http://www.adafruit.com/partfinder/header#male_header

PCB Circuit board
Adafruit
Industries

1

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 25 of 79

http://www.adafruit.com/

Solder
These are instructions for version 1.1 of
the kit!
If you are confused because your kit doesn't have a 74HAC125 in it, you probably want to read
the v1.0 instructions (http://adafru.it/c0u).

Make it

Get ready by placing the PCB in a vise.

We're going to the SD card first. While surface mount parts are a little
tougher than thru-hole, this piece has pin spacing of 0.1" so it is quite easy.
Doing it first also gives us lots of working room.

The holder should 'snap' perfectly into place thanks to two bumps on the
bottom.

We'll start with the four side tabs that are used to mechanically secure the
card holder in place.

Heat up the metal tab and the pad (the silver square beneath it) for 3
seconds with a hot soldering iron, then poke just a bit of solder in.

Do this for all three corners. Once this is done you should not be able to lift
the card holder

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 26 of 79

http://www.ladyada.net/make/waveshield/solder10.html
http://learn.adafruit.com/assets/4837
http://learn.adafruit.com/assets/4842
http://learn.adafruit.com/assets/4843
http://learn.adafruit.com/assets/5056

Now go thru and solder the 8 leftmost pins that stick out from the holder.
The three rightmost pins are thinner and closer together so they are tougher
to solder. Luckily they are not used and you simply skip them (although the
photo shows them done).

Check that you have no solder bridges - the pins should not be soldered to
the metal body of the holder or to each other.

Next, we will solder all of the many resistors. The 10K resistor R6 is first.

Form them into staples (as shown left with a 100 ohm resistor), then place
them so they sit flat against the PCB, in the correct locations. Resistors don't
have polarity so they can go in 'either way' and work fine!

Once placed, bend the leads out so the resistors don't fall out.

Solder the leads to the pads (metal ring) by heating both with the side-tip of
the iron for 3 seconds and then poking in a bit of solder.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 27 of 79

http://learn.adafruit.com/assets/4870
http://learn.adafruit.com/assets/5057
http://learn.adafruit.com/assets/4873
http://learn.adafruit.com/assets/5058
http://learn.adafruit.com/assets/5059
http://learn.adafruit.com/assets/4876
http://learn.adafruit.com/assets/5060

Use your diagonal cutters to clip the leads off just above the solder joint.

Finish up the resistors by placing R8 (100Kohm), and R7 (1.5K)

Solder the components.

Next is the 0.01uF ceramic capacitor C8. The tricky part here is that in older

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 28 of 79

http://learn.adafruit.com/assets/4878
http://learn.adafruit.com/assets/5061
http://learn.adafruit.com/assets/4880
http://learn.adafruit.com/assets/4881
http://learn.adafruit.com/assets/5063
http://learn.adafruit.com/assets/5064
http://learn.adafruit.com/assets/5065
http://learn.adafruit.com/assets/5066

Next is the 0.01uF ceramic capacitor C8. The tricky part here is that in older
kits there are many 0.1uF ceramic capacitors in the kit that look identical to
the 0.01uF!

The way to tell the difference is look for the 103 printed on it. If it says 104
then it's a 0.1uF. Make sure it says 103! This capacitor forms the output low-
pass filter for the audio so its important to have the right value.

Lately I have been shipping kits with axial (long-ways) package, not radial
(side-ways) package. These are longer (see left) and are easy to bend over
for soldering. This way there is less confusion. Either way, try to spot the
103 marking.

Place the capacitor right next to R7.

Ceramic capacitors are non-polarized and can go in 'either way.'

Solder and clip the small capacitor leads.

Once you're sure you have C8 correct, you can place the remaining 0.1uF
ceramic capacitors C2, C3, C5, C6 and C7.

Ceramic capacitors are non-polarized and can go in 'either way.'

Note carefully where C5 goes, it doesnt go below C1 but rather next to the
1.5K resistor

Solder and clip the capacitors.

Next is the DAC (digital-analog converter) IC2. This is what turns the data
into music. Make sure you pick the DAC to solder in here, it says MCP4921 on
it and has a stylized M.

The chip has a notch in one end and that notch must line up with the notch in
the silkscreen. In this photo, thats on the left.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 29 of 79

http://learn.adafruit.com/assets/4886
http://learn.adafruit.com/assets/5067
http://learn.adafruit.com/assets/4889
http://learn.adafruit.com/assets/4890
http://learn.adafruit.com/assets/4891
http://learn.adafruit.com/assets/4892
http://learn.adafruit.com/assets/4893

Flip over the board and solder in each pin of the chip. The pins are already
quite short so you dont have to clip them.

Next is the operational-amplifier (op-amp) IC3. It is used to buffer and
amplify the output, so that it can drive a small speaker or headphones.

This is a similar-looking chip to the DAC. Again, check that the notch
matches the silkscreen notch. In this photo, thats to the left.

Solder it in, just like you did with the DAC.

Next is IC4, the buffer to talk to the SD card. Match up the notch just like you
did with the smaller chips.

Next is the 3.3V regulator IC1 that provides a nice powersupply to run the
SD card. The regulator comes in a semi-circular package, so make sure it
matches up with the silkscreened image.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 30 of 79

http://learn.adafruit.com/assets/4894
http://learn.adafruit.com/assets/5068
http://learn.adafruit.com/assets/4896
http://learn.adafruit.com/assets/5069
http://learn.adafruit.com/assets/4900
http://learn.adafruit.com/assets/5071
http://learn.adafruit.com/assets/5072
http://learn.adafruit.com/assets/4905

Turn the board over and solder/clip the three leads.

Next is the reset button and the ICSP header. These let you reset the
Arduino manually, and reprogram it directly with a AVR programmer.

The button will snap in, its symmetric so it goes in 'either way'. The header is
also symmetric, make sure the long end sticks up.

Solder in both components. Their leads are pretty short so you dont need to
clip them.

Next are the three electrolytic capacitors C1 C4 and C9.

Electrolytic capacitors are polarized so make sure they go in the right way!
The long lead is the positive lead, make sure that goes into the hole marked
with a + as shown here.

Solder them in.

Next is the headphone jack. It snaps into place right at the edge of the PCB.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 31 of 79

http://learn.adafruit.com/assets/4908
http://learn.adafruit.com/assets/5073
http://learn.adafruit.com/assets/4910
http://learn.adafruit.com/assets/4940
http://learn.adafruit.com/assets/4945
http://learn.adafruit.com/assets/5074
http://learn.adafruit.com/assets/4949
http://learn.adafruit.com/assets/4950

Solder the jack in place. You'll want to clip the legs a little if you can, so that it
will sit better on the Arduino.

Next is the volume potentiometer TM1. This is an audio-type 10K pot. It will
slip into place pretty easily.

Solder all 5 pins of the potentiometer. Use plenty of solder so that it has a lot
of mechanical strength.

Next, break the 36-pin header strip into smaller sections so that the shield
can be placed on the Arduino. You can use pliers or diagonal cutters. Clip off
2-6pin and 2-8pin pieces.

If you're using a Diecimila, Duemilanove, Uno or later Arduino, place the 6 and
8 pin headers into the female sockes.

If you have an NG Arduino, you can place a 3-pin female header (not
included) as shown, which will let you use the reset button.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 32 of 79

http://learn.adafruit.com/assets/4951
http://learn.adafruit.com/assets/4953
http://learn.adafruit.com/assets/4955
http://learn.adafruit.com/assets/4956
http://learn.adafruit.com/assets/5075
http://learn.adafruit.com/assets/5076
http://learn.adafruit.com/assets/4959
http://learn.adafruit.com/assets/5078

Place the shield PCB onto the arduino so that all the holes match up with the
header.

Solder in each and every pin of header.

Next you can install the thumbwheel. Use a #0 screwdriver. Align the
thumbwheel so it 'grabs' the potentiometer, then gently screw it in place.

Pins 13, 12 and 11 are used to talk to the SD card and cant be changed. The
rest of the pins, however, are more flexible. Still, for all the examples on the
site we'll be using this wiring, so it is suggested to just go with this.

2 -> LCS
3 -> CLK
4 -> DI
5 -> LAT

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 33 of 79

http://learn.adafruit.com/assets/4964
http://learn.adafruit.com/assets/4966
http://learn.adafruit.com/assets/5079
http://learn.adafruit.com/assets/5081
http://learn.adafruit.com/assets/4975
http://learn.adafruit.com/assets/5082
http://learn.adafruit.com/assets/4976
http://learn.adafruit.com/assets/4977

10 -> CCS

You can use any sort of wire. Solder the jumper wires in place.

Hooray you are done! Now onto the user manual...

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 34 of 79

http://learn.adafruit.com/assets/4978

Use it!
How to use it
Once you've got your wave shield assembled and tested you can now customize it as desired

1. Format an SD/MMC card (http://adafru.it/cDF)
2. Convert audio files so they are suitable for playing (http://adafru.it/cDG)
3. Check out documentation for AF_Wave, (http://adafru.it/cDH) the 'classic' (and soon to be

deprecated) wave shield library.
4. Check out walkthroughs for a digital audio player (http://adafru.it/cDI) and 6-button audio

player (http://adafru.it/cDJ) with the nice new waveHC library.
5. Try out some of the example sketches. (http://adafru.it/cDK)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 35 of 79

sd-card
convert-files
afwave-lib
wavehc
wavehc-number-2
examples

SD Card
Introduction
The wave shield uses SD/MMC cards. They are extraordinarily popular, sometimes even
available in grocery stores! They are used in MP3 players, cameras, audio recorders, etc. You
can use any card that can store 32 MB ore more. A 4 gigabyte card can hold 25 hours of
uncompressed audio for the shield, and costs $12 (http://adafru.it/102).

The shield kit doesn't come with an SD card but we carry one in the shop that is guaranteed to
work (http://adafru.it/102). Pretty much any SD card should work but be aware that some cheap
cards are 'fakes' and can cause headaches.

You'll also need a way to read and write from the SD card. Sometimes you can use your camera
and MP3 player - when its plugged in you will be able to see it as a disk. Or you may need an SD
card reader.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 36 of 79

http://www.adafruit.com/products/102
http://www.adafruit.com/products/102

These are very common, available in any computer store. The shield doesn't have the ability
to display the SD card as a 'hard disk' like some MP3 players or games, the Arduino does not
have the hardware for that, so you will need an external reader!

To use the SD card interface library you'll need a '328 Arduino . If you have an NG
or '168 chipped Arduino we suggest upgrading to a '328 (http://adafru.it/aIH). It's easy and
inexpensive and you'll be very happy with the 2x RAM and Flash. All UNO's have Atmega328
chips.

Formatting under Windows/Mac
If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem.
However you may have problems with how the factory formats the card, or if it's an old cart it
needs to be reformatted. The Arduino SD library we use supports both FAT16 and FAT32
filesystems. If you have a very small SD card, say 8-32 Megabytes you might find it is formatted
FAT12 which isn't supported. You'll have to reformat these card. Either way, it's always a good
idea to format the card before using, even if it's new! Note that formatting will erase the card so
save anything you want first.

 We strongly recommend you use the official SD card formatter utility - written by the SD
association it solves many problems that come with bad formatting!

Download the Formatter
http://adafru.it/c73

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 37 of 79

http://www.adafruit.com/index.php?main_page=product_info&cPath=17&products_id=123
https://www.sdcard.org/downloads/formatter_3/

Download it and run it on your computer, there's also a manual linked from that page for use.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 38 of 79

Convert files
Intro
The wave shield is designed to play a very specific type of audio. If your music sample is in MP3
format, or 44KHz wav, you'll want to convert it to the right format. This way you will get the best
sounding audio.

 The Wave Shield does not support "long filenames" - so if you have a file called, say,
"My favorite song.wav" it will show up as "MY FAV~1.WAV" in the shield, which can be
confusing. To make your brain hurt a little less, rename your files to 8.3 all-caps format so
for example, "My favorite song.wav" -> "MYFAVSNG.WAV"

Check the file
If you have a wave file already, you should check to see if it's already in a proper format. That
way you will save yourself some time! In windows, right-click on the file, and select
Properties then click on the Summary tab.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 39 of 79

This file is 16KHz, 16-bit, mono PCM. Since thats below the maximum (22KHz, 16-bit, mono
PCM) you are good to go. No need to convert the file.

OK lets say the file is an MP3 or 44KHz or stereo wave file. We will need to convert it down.

Option 1. Use iTunes
You can do the conversion easily with iTunes (available for Mac/Windows) if you have your
music in iTunes already this will be super fast to convert multiple files!

You'll have to set the preferences first, but you only have to do it once.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 40 of 79

Go to the Advanced->Importing tab. Make sure it is set to 22KHz (or less), 16bit (or less)
and Mono channels. Click OK.

Next find the files you want to convert. Select Convert Selection to WAV from the menu.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 41 of 79

Then simply drag the sounds onto an SD card.

Option 2. Use SoX
Check out this tutorial (http://adafru.it/c0z) on using a command-line tool to quickly convert
files.

Option 3. Use Audacity
If you dont have or don't want to use iTunes you can convert files (one at a time) with Audacity.

This is pretty easy. You can use the free Audacity software (http://adafru.it/c0A) - available for
windows, linux or mac.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 42 of 79

http://forums.adafruit.com/viewtopic.php?p=29636
http://audacity.sourceforge.net/

Grab it from the download page and install it on your computer

Step 3. Start up Audacity and open the
file
Start up Audacity

Select File->Open... and open the file. In my case its an MP3.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 43 of 79

Audacity will spend some time uncompressing and opening the file and then present you with
something like this:

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 44 of 79

Step 4. Split and Mix a stereo track
Next, if you have a stero track, you'll probably want to turn it into a mixed mono track. That way
it will sound most like the original. Click on the title and select Split Stereo Track.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 45 of 79

Next, when you mix a track you'll end up adding both of them together. This means that if both
sides are loud, you'll get distortion. Reduce the gain on both tracks to -6dB.

Then convert both tracks to Mono by clicking on each title. Make sure you do it for both
tracks!

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 46 of 79

Now to mix! From the menu select Project -> Quick Mix

A few seconds later, you have converted your stereo track to mono!

Step 5. Convert to 16 bit audio
If your audio rate is higher than 16-bit, you will want to downconvert it. Click on the track title
and select Set Sample Format -> 16-bit

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 47 of 79

Step 6. Convert to 22-KHz or less
Finally, make sure the audio file will be saved as 22KHz. If the the track label says 44KHz you will
want to convert it.

At the bottom of the window there is a little button named Project rate: Make sure this is
22KHz or less.

Step 7. Prepare to export
Check the Preferences menu item and select the File Formats tab. Make sure the
Uncompressed Export Format is WAV (Microsoft 16 bit PCM).

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 48 of 79

You only have to do this once!

Step 8. Export!
Finally, you're ready to export the file. Select Export as WAV... from the pulldown

It may take a few seconds to convert and save the file.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 49 of 79

Finally, check the file Properties. It should be 16 bit, mono, 22KHz (or less) and PCM format.

OK! Now you can go to the next step, which is formatting an SD card and copying files over.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 50 of 79

waveHC Library
Get more RAM & Flash!
This library uses a lot of RAM, if you are using an older '168 or '8 Arduino, you must upgrade to
an ATmega328 (http://adafru.it/c0B). The shield was designed with the expectation that this
upgrade would be available.

A tour of dap_hc.pde
This is a tutorial of the waveHC library (http://adafru.it/aQ7) by going through dap_hc.pde

It's detailed and a little daunting. But stick with it since much of the code is going to be
duplicated from this sketch to others!

Make sure you install the library by downloading it from the link above and sticking WaveHC
folder in the libraries folder. The zip also contains dap_hc.pde

Note: The WaveHC library repository has an extra level of folders in it. To install the
WaveHC library, you must first remove it from the top-level folder that you downloaded.

In case you need the sketch we're referring to here, it's at the bottom of the page.

Initialize the card
The hard work of playing music is all done right on the Arduino. This lets us skip having an MP3
decoder or other dedicated chip. That means more control and flexibility, but more firmware!
Lets take a tour through the canonical sketch "dapHC.pde" this is a Digital Audio Player (dap)
sketch using the Wave HC librarry. We used to use the Adafruit AF_Wave library but Mr. Fat16
did a fantastic job rewriting our code and making it faster, smaller and better. So we're going to
use his library in this tutorial!

Download the dapHC.pde sketch and read along! The first thing we need are some objects.
The tough part is talking to the card. All cards are manufactured and formatted a little different.
And the formatting has many layers - the card format - the partition format and the filesystem
formatting. At the beginning of the sketch we have the #include to get the library header files in
and an object for storing information about the card card, partition volume vol and filesystem
root. We also have a directory buffer, for information on any folder/directories and an object
for storing information about a single wave file wave.

These are all pretty much manditory unless perhaps you dont want directory traversal in which

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 51 of 79

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
http://code.google.com/p/wavehc/

case you can probably skip dirBuf.

#include "WaveUtil.h"

#include "WaveHC.h"

SdReader card; // This object holds the information for the card

FatVolume vol; // This holds the information for the partition on the card

FatReader root; // This holds the information for the filesystem on the card

uint8_t dirLevel; // indent level for file/dir names (for prettyprinting)

dir_t dirBuf; // buffer for directory reads

WaveHC wave; // This is the only wave (audio) object, since we will only play one at a time

First thing that must be done is initializing the SD card for reading. This is a multistep process. In
the setup loop you can see the multiple checks we do as we proceed through the initialization
process.

Here are the steps:

1. Wake up and print out the to Serial Monitor that we're running. (OPTIONAL)
2. Check how much free RAM we have after we have used the buffer for storing

Wave audio data, make sure its more than 100 bytes and keep an eye on it as you
modify your code. This test can be removed, it's for your use. (OPTIONAL)

3. Set the pin modes for the DAC control lines. These should not be changed unless
you've modified them in the library as well. It's probably best to keep them as-is.

4. Initialize the SD card and see if it responds. We try to talk to it at 8MHz. If you have a
waveshield 1.0 you may need to use 4MHz mode so comment out one line and
uncommment the other to swap which method is used. If the card fails to initialize, print
out an error and halt.

5. Allow partial block reads. Some SD cards don't like this so if you're having
problems, comment this out first! (OPTIONAL)

6. Try to find a FAT partition in the first 5 slots. You did format the card to FAT format,
right? If it can't find a FAT partition it will print out that it failed, so make sure you format it
again if it's giving you trouble.

7. Print out what kind of FAT partition was found. (OPTIONAL)
8. Try to open up the root directory. If this doesnt work, something is messed up with

the formatting. Try to format it again!
9. Finally, print out the files found, one after the other in the directories on the card. This is

great for debugging and will show you what you've got on there. Since we don't have long
filename access and use the 'base' 8.3 format to define files, you'll need to see what the
files are named on the partition and this helps a lot. (OPTIONAL)

void setup() {

 Serial.begin(9600); // set up Serial library at 9600 bps for debugging

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 52 of 79

 putstring_nl("\nWave test!"); // say we woke up!

 putstring("Free RAM: "); // This can help with debugging, running out of RAM is bad

 Serial.println(freeRam());

 // Set the output pins for the DAC control. This pins are defined in the library

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 // if (!card.init(true)) { //play with 4 MHz spi if 8MHz isn't working for you

 if (!card.init()) { //play with 8 MHz spi (default faster!)

 putstring_nl("Card init. failed!"); // Something went wrong, lets print out why

 sdErrorCheck();

 while(1); // then 'halt' - do nothing!

 }

 // enable optimize read - some cards may timeout. Disable if you're having problems

 card.partialBlockRead(true);

 // Now we will look for a FAT partition!

 uint8_t part;

 for (part = 0; part < 5; part++) { // we have up to 5 slots to look in

 if (vol.init(card, part))

 break; // we found one, lets bail

 }

 if (part == 5) { // if we ended up not finding one :(

 putstring_nl("No valid FAT partition!");

 sdErrorCheck(); // Something went wrong, lets print out why

 while(1); // then 'halt' - do nothing!

 }

 // Lets tell the user about what we found

 putstring("Using partition ");

 Serial.print(part, DEC);

 putstring(", type is FAT");

 Serial.println(vol.fatType(),DEC); // FAT16 or FAT32?

 // Try to open the root directory

 if (!root.openRoot(vol)) {

 putstring_nl("Can't open root dir!"); // Something went wrong,

 while(1); // then 'halt' - do nothing!

 }

 // Whew! We got past the tough parts.

 putstring_nl("Files found:");

 dirLevel = 0;

 // Print out all of the files in all the directories.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 53 of 79

 lsR(root);

}

Looking for files in a directory
OK now that you've initialized the card, we perform a recursive list of all files found. This is
useful for debugging and ALSO shows how you can navigate the file system.

To start, pass a directory object (like root) to lsR() which will do the following:

1. Read a file from the directory. The files are read in the order they are copied into the
directory, not alphabetical order!

2. If the directories are the special links "." (current directory) or ".." (upper directory) it
ignores them and goes to step 1 again.

3. It prints out spaces to create a nicely formatted output. Each level of directory gets 2
spaces.

4. It prints out the name of the file in 8.3 format.
5. If it is a subdirectory, it makes a new object and opens up the subdirectory. Then it prints

out all of the files in that new directory.
6. It continues to step 1 until there are no more files to be read.

/*

 * list recursively - possible stack overflow if subdirectories too nested

 */

void lsR(FatReader &d)

{

 int8_t r; // indicates the level of recursion

 while ((r = d.readDir(dirBuf)) > 0) { // read the next file in the directory

 // skip subdirs . and ..

 if (dirBuf.name[0] == '.')

 continue;

 for (uint8_t i = 0; i < dirLevel; i++)

 Serial.print(' '); // this is for prettyprinting, put spaces in front

 printEntryName(dirBuf); // print the name of the file we just found

 Serial.println(); // and a new line

 if (DIR_IS_SUBDIR(dirBuf)) { // we will recurse on any direcory

 FatReader s; // make a new directory object to hold information

 dirLevel += 2; // indent 2 spaces for future prints

 if (s.open(vol, dirBuf))

 lsR(s); // list all the files in this directory now!

 dirLevel -=2; // remove the extra indentation

 }

 }

 sdErrorCheck(); // are we doign OK?

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 54 of 79

}

There is also a helper called printEntryName which prints out the file in a nice format. Files
are named in 8.3 format, an older and simpler way of addressing files. It's a little less pretty
than "Long Name Format" so watch out to see what your files are renamed as. For example
"Bird song.wav" may be renamed to "BIRDSONG.WAV" or "BIRDSO~1.WAV" !

/*

 * print dir_t name field. The output is 8.3 format, so like SOUND.WAV or FILENAME.DAT

 */

void printEntryName(dir_t &dir)

{

 for (uint8_t i = 0; i < 11; i++) { // 8.3 format has 8+3 = 11 letters in it

 if (dir.name[i] == ' ')

 continue; // dont print any spaces in the name

 if (i == 8)

 Serial.print('.'); // after the 8th letter, place a dot

 Serial.print(dir.name[i]); // print the n'th digit

 }

 if (DIR_IS_SUBDIR(dir))

 Serial.print('/'); // directories get a / at the end

}

One thing that appears in loop() is dir.rewind(). The reason we rewind a directory is that our
Arduino code is very simple. It can go through the files in a directory but only 'forward', not
backward (FAT format is kinda like that). So if you skipped a file and want to go back, or you've
gone through the directory, you will need to call rewind() to set it back to the beginning!

Playing all the files
The digital audio player plays all files in the card. To do that it recursively looks in every
directory, just like lsR() above so the code looks somewhat similar. The big difference is we
call the play() routine to play a file!

To start, pass a directory object (like root) to lsR() which will do the following:

1. Read a file from the directory. The files are read in the order they are copied into the
directory, not alphabetical order!

2. If the directories are the special links "." (current directory) or ".." (upper directory) it
ignores them and goes to step 1 again.

3. It prints out spaces to create a nicely formatted output. Each level of directory gets 2
spaces.

4. It prints out the name of the file in 8.3 format.
5. If it is a subdirectory, it makes a new object and opens up the subdirectory. Then it plays

all of the wave files in that new directory.
6. If it isn't a subdirectory, it will try to play the file by opening it as a Wave object. That

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 55 of 79

requires looking through the file and trying to find a Wave header, etc. If it doesn't
succeed it will print out that it's not valid and skip to the next file.

7. If the wave file is valid, it will finally start the file by calling play() on the Wave object.
8. While the wave sound file is playing, it prints out a dot every 100 ms or so.
9. It continues to step 1 until there are no more files to be read.

/*

 * play recursively - possible stack overflow if subdirectories too nested

 */

void play(FatReader &dir)

{

 FatReader file;

 while (dir.readDir(dirBuf) > 0) { // Read every file in the directory one at a time

 // skip . and .. directories

 if (dirBuf.name[0] == '.')

 continue;

 Serial.println(); // clear out a new line

 for (uint8_t i = 0; i < dirLevel; i++)

 Serial.print(' '); // this is for prettyprinting, put spaces in front

 if (!file.open(vol, dirBuf)) { // open the file in the directory

 Serial.println("file.open failed"); // something went wrong :(

 while(1); // halt

 }

 if (file.isDir()) { // check if we opened a new directory

 putstring("Subdir: ");

 printEntryName(dirBuf);

 dirLevel += 2; // add more spaces

 // play files in subdirectory

 play(file); // recursive!

 dirLevel -= 2;

 }

 else {

 // Aha! we found a file that isnt a directory

 putstring("Playing "); printEntryName(dirBuf); // print it out

 if (!wave.create(file)) { // Figure out, is it a WAV proper?

 putstring(" Not a valid WAV"); // ok skip it

 } else {

 Serial.println(); // Hooray it IS a WAV proper!

 wave.play(); // make some noise!

 while (wave.isplaying) { // playing occurs in interrupts, so we print dots in realtime

 putstring(".");

 delay(100);

 }

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 56 of 79

 sdErrorCheck(); // everything OK?

// if (wave.errors)Serial.println(wave.errors); // wave decoding errors

 }

 }

 }

}

dap_hc.pde
The full sketch is in the library zip! (http://adafru.it/aQ7)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 57 of 79

http://code.google.com/p/wavehc/

The Play6_HC Example
Get more RAM & Flash!
Before you try to play audio, you'll want to free up some Arduino RAM, so that you don't end up
with a nasty stack-overflow. Running out of RAM is hard to debug and frustrating, and likely if
you're using a '168.

Follow these instructions (http://adafru.it/c0C) on how to get more RAM by reducing the input
Serial library buffer. You don't need to do this if you're using an
ATmega328 (http://adafru.it/c0B).

Note that the library is pretty big (about 10K) so if you want to do a lot more, I suggest
upgrading to an ATmega328 (http://adafru.it/c0B). The shield was designed with the
expectation that this upgrade would be available.

A tour of play6_hc.pde
This is a tutorial of the waveHC library (http://adafru.it/c0D).

It's detailed and a little daunting. But stick with it since much of the code is going to be
duplicated from this sketch to others!

Make sure you install the library by downloading it from the link above and sticking WaveHC
folder in the libraries folder.

In case you need the sketch we're referring to here, it's at the bottom of the page.

Initialize the card
The hard work of playing music is all done right on the Arduino. This lets us skip having an MP3
decoder or other dedicated chip. That means more control and flexibility, but more firmware!
Lets take a tour through the canonical sketch "dapHC.pde" this is a Digital Audio Player (dap)
sketch using the Wave HC librarry. We used to use the Adafruit AF_Wave library but Mr. Fat16
did a fantastic job rewriting our code and making it faster, smaller and better. So we're going to
use his library in this tutorial :)

Download the dapHC.pde sketch and read along! The first thing we need are some objects.
The tough part is talking to the card. All cards are manufactured and formatted a little different.
And the formatting has many layers - the card format - the partition format and the filesystem
formatting. At the beginning of the sketch we have the #include to get the library header files in

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 58 of 79

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-hacks
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
https://code.google.com/p/wavehc/

and an object for storing information about the card card, partition volume vol and filesystem
root. We also have an object for holding the current file information f and an object for storing
information about a single wave file wave.

#include "WaveUtil.h"

#include "WaveHC.h"

SdReader card; // This object holds the information for the card

FatVolume vol; // This holds the information for the partition on the card

FatReader root; // This holds the information for the filesystem on the card

FatReader f; // This holds the information for the file we're playing

WaveHC wave; // This is the only wave (audio) object, since we will only play one at a time

#define DEBOUNCE 100 // button debouncer

First thing that must be done is initializing the SD card for reading. This is a multistep process. In
the setup loop you can see the multiple checks we do as we proceed through the initialization
process.

Here are the steps:

1. Wake up and print out the to Serial Monitor that we're running. (OPTIONAL)
2. Check how much free RAM we have after we have used the buffer for storing

Wave audio data, make sure it's more than 100 bytes and keep an eye on it as you
modify your code. This test can be removed, it's for your use. (OPTIONAL)

3. Set the pin modes for the DAC control lines. These should not be changed unless
you've modified them in the library as well. It's probably best to keep them as-is.

4. Initialize the SD card and see if it responds. We try to talk to it at 8MHz. If you have a
waveshield 1.0 you may need to use 4MHz mode so comment out one line and
uncommment the other to swap which method is used. If the card fails to initialize, print
out an error and halt.

5. Allow partial block reads. Some SD cards don't like this so if you're having
problems, comment this out first! (OPTIONAL)

6. Try to find a FAT partition in the first 5 slots. You did format the card to FAT format,
right? If it can't find a FAT partition it will print out that it failed, so make sure you format it
again if it's giving you trouble.

7. Print out what kind of FAT partition was found. (OPTIONAL)
8. Try to open up the root directory. If this doesn't work, something is messed up

with the formatting. Try to format it again!

void setup() {

 // set up serial port

 Serial.begin(9600);

 putstring_nl("WaveHC with 6 buttons");

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 59 of 79

 putstring("Free RAM: "); // This can help with debugging, running out of RAM is bad

 Serial.println(freeRam()); // if this is under 150 bytes it may spell trouble!

 // Set the output pins for the DAC control. This pins are defined in the library

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 // pin13 LED

 pinMode(13, OUTPUT);

 // enable pull-up resistors on switch pins (analog inputs)

 digitalWrite(14, HIGH);

 digitalWrite(15, HIGH);

 digitalWrite(16, HIGH);

 digitalWrite(17, HIGH);

 digitalWrite(18, HIGH);

 digitalWrite(19, HIGH);

 // if (!card.init(true)) { //play with 4 MHz spi if 8MHz isn't working for you

 if (!card.init()) { //play with 8 MHz spi (default faster!)

 putstring_nl("Card init. failed!"); // Something went wrong, lets print out why

 sdErrorCheck();

 while(1); // then 'halt' - do nothing!

 }

 // enable optimize read - some cards may timeout. Disable if you're having problems

 card.partialBlockRead(true);

// Now we will look for a FAT partition!

 uint8_t part;

 for (part = 0; part < 5; part++) { // we have up to 5 slots to look in

 if (vol.init(card, part))

 break; // we found one, lets bail

 }

 if (part == 5) { // if we ended up not finding one :(

 putstring_nl("No valid FAT partition!");

 sdErrorCheck(); // Something went wrong, lets print out why

 while(1); // then 'halt' - do nothing!

 }

 // Lets tell the user about what we found

 putstring("Using partition ");

 Serial.print(part, DEC);

 putstring(", type is FAT");

 Serial.println(vol.fatType(),DEC); // FAT16 or FAT32?

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 60 of 79

 // Try to open the root directory

 if (!root.openRoot(vol)) {

 putstring_nl("Can't open root dir!"); // Something went wrong,

 while(1); // then 'halt' - do nothing!

 }

 // Whew! We got past the tough parts.

 putstring_nl("Ready!");

 dirLevel = 0;

}

Button interfacing
We want to play a sound each time a button is pressed. We will use a function called
check_switches() that goes through the 6 buttons (digital 14 through 20) to see if they have
been pressed. If so, we play SOUND1.WAV (for example) completely through. The function
that we call here that does the playing is called playcomplete() and we pass the name of the
Wave file in quotes just like you see here.

void loop() {

 //putstring("."); // uncomment this to see if the loop isnt running

 switch (check_switches()) {

 case 1:

 playcomplete("SOUND1.WAV");

 break;

 case 2:

 playcomplete("SOUND2.WAV");

 break;

 case 3:

 playcomplete("SOUND3.WAV");

 break;

 case 4:

 playcomplete("SOUND4.WAV");

 break;

 case 5:

 playcomplete("SOUND5.WAV");

 break;

 case 6:

 playcomplete("SOUND6.WAV");

 }

}

byte check_switches()

{

 static byte previous[6];

 static long time[6];

 byte reading;

 byte pressed;

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 61 of 79

 byte index;

 pressed = 0;

 for (byte index = 0; index < 6; ++index) {

 reading = digitalRead(14 + index);

 if (reading == LOW && previous[index] == HIGH && millis() - time[index] > DEBOUNCE)

 {

 // switch pressed

 time[index] = millis();

 pressed = index + 1;

 break;

 }

 previous[index] = reading;

 }

 // return switch number (1 - 6)

 return (pressed);

}

Playcomplete & Playfile
Here is where we open the file and play it.

Playcomplete is very simple, it just calls a function that starts the audio playback and then
sits in a loop doing nothing.

Playfile is the important function. It finds and opens the file and plays it.

1. It first sees if we're already playing any audio. If so, it stops it.
2. Now it opens the root directory and looks for the file by the name we requested. If it can't

find it, the function returns.
3. If it finds it, it tries to turn it into a Wave file object, looking for the right header in the file. If

not it also returns.
4. If it succeeds, it begins to play.

// Plays a full file from beginning to end with no pause.

void playcomplete(char *name) {

 // call our helper to find and play this name

 playfile(name);

 while (wave.isplaying) {

 // do nothing while its playing

 }

 // now its done playing

}

void playfile(char *name) {

 // see if the wave object is currently doing something

 if (wave.isplaying) {// already playing something, so stop it!

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 62 of 79

 wave.stop(); // stop it

 }

 // look in the root directory and open the file

 if (!f.open(root, name)) {

 putstring("Couldn't open file "); Serial.print(name); return;

 }

 // OK read the file and turn it into a wave object

 if (!wave.create(f)) {

 putstring_nl("Not a valid WAV"); return;

 }

 // ok time to play! start playback

 wave.play();

}

play6_hc.pde
#include <FatReader.h>

#include <SdReader.h>

#include <avr/pgmspace.h>

#include "WaveUtil.h"

#include "WaveHC.h"

SdReader card; // This object holds the information for the card

FatVolume vol; // This holds the information for the partition on the card

FatReader root; // This holds the information for the filesystem on the card

FatReader f; // This holds the information for the file we're play

WaveHC wave; // This is the only wave (audio) object, since we will only play one at a time

#define DEBOUNCE 100 // button debouncer

// this handy function will return the number of bytes currently free in RAM, great for debugging!

int freeRam(void)

{

 extern int __bss_end;

 extern int *__brkval;

 int free_memory;

 if((int)__brkval == 0) {

 free_memory = ((int)&free_memory) - ((int)&__bss_end);

 }

 else {

 free_memory = ((int)&free_memory) - ((int)__brkval);

 }

 return free_memory;

}

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 63 of 79

void sdErrorCheck(void)

{

 if (!card.errorCode()) return;

 putstring("\n\rSD I/O error: ");

 Serial.print(card.errorCode(), HEX);

 putstring(", ");

 Serial.println(card.errorData(), HEX);

 while(1);

}

void setup() {

 // set up serial port

 Serial.begin(9600);

 putstring_nl("WaveHC with 6 buttons");

 putstring("Free RAM: "); // This can help with debugging, running out of RAM is bad

 Serial.println(freeRam()); // if this is under 150 bytes it may spell trouble!

 // Set the output pins for the DAC control. This pins are defined in the library

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 // pin13 LED

 pinMode(13, OUTPUT);

 // enable pull-up resistors on switch pins (analog inputs)

 digitalWrite(14, HIGH);

 digitalWrite(15, HIGH);

 digitalWrite(16, HIGH);

 digitalWrite(17, HIGH);

 digitalWrite(18, HIGH);

 digitalWrite(19, HIGH);

 // if (!card.init(true)) { //play with 4 MHz spi if 8MHz isn't working for you

 if (!card.init()) { //play with 8 MHz spi (default faster!)

 putstring_nl("Card init. failed!"); // Something went wrong, lets print out why

 sdErrorCheck();

 while(1); // then 'halt' - do nothing!

 }

 // enable optimize read - some cards may timeout. Disable if you're having problems

 card.partialBlockRead(true);

// Now we will look for a FAT partition!

 uint8_t part;

 for (part = 0; part < 5; part++) { // we have up to 5 slots to look in

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 64 of 79

 if (vol.init(card, part))

 break; // we found one, lets bail

 }

 if (part == 5) { // if we ended up not finding one :(

 putstring_nl("No valid FAT partition!");

 sdErrorCheck(); // Something went wrong, lets print out why

 while(1); // then 'halt' - do nothing!

 }

 // Lets tell the user about what we found

 putstring("Using partition ");

 Serial.print(part, DEC);

 putstring(", type is FAT");

 Serial.println(vol.fatType(),DEC); // FAT16 or FAT32?

 // Try to open the root directory

 if (!root.openRoot(vol)) {

 putstring_nl("Can't open root dir!"); // Something went wrong,

 while(1); // then 'halt' - do nothing!

 }

 // Whew! We got past the tough parts.

 putstring_nl("Ready!");

}

void loop() {

 //putstring("."); // uncomment this to see if the loop isnt running

 switch (check_switches()) {

 case 1:

 playcomplete("SOUND1.WAV");

 break;

 case 2:

 playcomplete("SOUND2.WAV");

 break;

 case 3:

 playcomplete("SOUND3.WAV");

 break;

 case 4:

 playcomplete("SOUND4.WAV");

 break;

 case 5:

 playcomplete("SOUND5.WAV");

 break;

 case 6:

 playcomplete("SOUND6.WAV");

 }

}

byte check_switches()

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 65 of 79

{

 static byte previous[6];

 static long time[6];

 byte reading;

 byte pressed;

 byte index;

 pressed = 0;

 for (byte index = 0; index < 6; ++index) {

 reading = digitalRead(14 + index);

 if (reading == LOW && previous[index] == HIGH && millis() - time[index] > DEBOUNCE)

 {

 // switch pressed

 time[index] = millis();

 pressed = index + 1;

 break;

 }

 previous[index] = reading;

 }

 // return switch number (1 - 6)

 return (pressed);

}

// Plays a full file from beginning to end with no pause.

void playcomplete(char *name) {

 // call our helper to find and play this name

 playfile(name);

 while (wave.isplaying) {

 // do nothing while its playing

 }

 // now its done playing

}

void playfile(char *name) {

 // see if the wave object is currently doing something

 if (wave.isplaying) {// already playing something, so stop it!

 wave.stop(); // stop it

 }

 // look in the root directory and open the file

 if (!f.open(root, name)) {

 putstring("Couldn't open file "); Serial.print(name); return;

 }

 // OK read the file and turn it into a wave object

 if (!wave.create(f)) {

 putstring_nl("Not a valid WAV"); return;

 }

 // ok time to play! start playback

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 66 of 79

 wave.play();

}

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 67 of 79

AFwave Lib.
DISCONTINUED!
This documentation is for historical reference only!

 AF_Wave is no longer supported or used, it does not work with the SDHC SD Cards, so
we put it to pasture. Please use the superior WaveHC instead!

Get more RAM & Flash!
Before you try to play audio, you'll want to free up some Arduino RAM, so that you don't end up
with a nasty stack-overflow.

Follow these instructions (http://adafru.it/c0C) on how to get more RAM by reducing the input
Serial library buffer. You dont need to do this if you're using an
ATmega328 (http://adafru.it/c0B).

Note that the library is pretty big (about 10K) so if you want to do a lot more, I suggest
upgrading to an ATmega328 (http://adafru.it/c0B). The shield was designed with the
expectation that this part would be available.

A tour of the AF_Wave library
This is a description of the AF_Wave library, which is the 'default' library for the Wave shield.
However, there is an 'updated' and superior library, WaveHC written by Mr
Fat16 (http://adafru.it/c0D) in the forums. This library is powerful, works with more cards and
card formatting issues, and uses less space. This tutorial is here for those who want to use the
classic AF_Wave library but we suggest you also check out WaveHC (http://adafru.it/aQ7). It's
very similar to AF_Wave so you can probably switch between the two.

We have a runthrough of WaveHC over here (http://adafru.it/c0w).

Initialize the card
The first thing that must be done is initializing the SD card for reading. You should copy & paste
this code from the examples since there's really only one way to do it.

Note that this here is a snippet, use the examples in the library for the 'full listing.'

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 68 of 79

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-hacks
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
https://code.google.com/p/wavehc/
http://code.google.com/p/wavehc/
http://learn.adafruit.com/audio-shield-for-arduino/wavehc

AF_Wave card;

void setup()

{

 ...

 if (!card.init_card()) {

 putstring_nl("Card init. failed!"); return;

 }

 if (!card.open_partition()) {

 putstring_nl("No partition!"); return;

 }

 if (!card.open_filesys()) {

 putstring_nl("Couldn't open filesys"); return;

 }

 if (!card.open_rootdir()) {

 putstring_nl("Couldn't open dir"); return;

 }

}

...

This code will try to initialize the card, open the partition table, open the FAT16 filesystem and
finally open the root directory. If it fails it will print out an error message.

Looking for files
There isn't a lot of interface code for going through the root directory. Basically you can reset
the directory (start over from beginning) and get the name of the next file. The files are not
organized alphabetically but rather in the order that they were created on the card.

You'll need to make a character array 13 characters long to store the 8.3 + terminating 0 of the
file. Here is an example of displaying the name of each file available. When done, it resets the
directory.

void ls() {

 char name[13];

 int ret;

 card.reset_dir();

 putstring_nl("Files found:");

 while (1) {

 ret = card.get_next_name_in_dir(name);

 if (!ret) {

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 69 of 79

 card.reset_dir();

 return;

 }

 Serial.println(name);

 }

}

Opening a file for playing
There are two steps to opening a file for playing. The first is to just open the file itself, then the
file must be converted to a wavefile. That means the file is read and checked for a wavetable
header. To open a file, you just need the name, you can pass in a string such as
"MYSOUND.WAV" or read through the directory and use the name returned from
get_next_name_in_dir(). Since long names arent supported (to keep the library smaller) you
may want to use ls() function above to see what the 8.3 format name of the file is.

AF_Wave card;

File f;

Wavefile wave; // only one!

void playfile(char *name) {

 f = card.open_file(name);

 if (!f) {

 putstring_nl(" Couldn't open file"); return;

 }

 if (!wave.create(f)) {

 putstring_nl(" Not a valid WAV"); return;

 }

 ...

}

Playing the file
Finally we can play the file! It's quite easy, once the wavefile has been opened as above, simply
call wave.play() to being playback. The Arduino plays audio in an interrupt, which means that
wave.play() returns immediately. You can then mess with sensors, print feedback or buttons
or whatever.

While the wavefile is playing, you can check its status with the variable wave.isplaying. If the
variable is 1 then the audio is playing. If its 0 that means it has finished playing.

You can stop playback by calling wave.stop()

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 70 of 79

Closing the file
When you're done playing audio from a file, you must close it! You can close the file by calling
card.close_file(f) where f is the file you created using card.open_file(name)

Changing sample rate
This is sort of strange, but may be useful if, say, you have a sine wave or sample that youd like
to change the pitch of or if you'd like to 'fast forward' through some music.

The sample rate (i.g. 22kHz) is stored in wave.dwSamplesPerSec. It will be initially set to
whatever the wave file is supposed to be. Simply assign a new sample rate to the variable to
change it on the fly.

See here for more information. (http://adafru.it/c0y)

Saving & restoring the play position
If, say, you want to know where along in the wave file you are, that information is also available
in wave. in wave.getSize() (the number of bytes in the entire wave) and
wave.remainingBytesInChunk (how many bytes are left to play).

You can set the current place to play from using wave.seek(), the Arduino will immediately
start to fastforward to that location. For example, wave.seek(0) will take you to the beginning,
wave.seek(wave.getSize()/2) will take you to the middle of the file.

Volume adjust
You can change the volume of the audio 'digitally' on the fly. Note that this doesn't change the
volume control potentiometer, it actually just reduces the digital values going to the DAC. Thus
the quality of the audio will be degraded. However, it may come in handy so it has been
included. Since it slows down playback a bit, it is not enabled by default. To enable digital
volume control, open up wave.cpp in the library folder and look for the line #define
DVOLUME 0 and change the 0 to a 1. Then delete all the files in the library folder that end
with .o, this will force the software to recompile the library when the sketch is compiled.

The volume is controlled by a variable in the Wavefile object. For example, if you have
Wavefile wave at the top of your sketch, then you can set the volume by calling
wave.volume = 4. The volume can be set from 0 to 12. A volume value of 0 is maximum,
and 12 is silence. Anything higher than 12 will be the same as 12.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 71 of 79

http://learn.adafruit.com/audio-shield-for-arduino/examples

See here for more information (http://adafru.it/c0y).

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 72 of 79

http://learn.adafruit.com/audio-shield-for-arduino/examples

Examples
Getting Stack overflow errors?
These examples are all tested to work with IDE v13 or higher, so try to use that if possible!

Get more RAM & Flash!
This library uses a lot of RAM, if you are using an older '168 or '8 Arduino, you must upgrade to
an ATmega328 (http://adafru.it/c0B). The shield was designed with the expectation that this
upgrade would be available.

Generating speech
If you want a human voice in your project, you can use the free generator at AT&T Text-to-
Speech demo page (http://adafru.it/c0E).

It will create a 16KHz, 16-bit audio file so you can use the audio 'right out of the box.'

Sound sample library
Here is huge collection of C.C. Attribution licensed sound samples! (http://adafru.it/c0F) A lot of
it is already mono, 16 or 22KHz.

Digital audio player
This is the simplest example. It plays every audio file it finds on the SD card in a loop. This
sketch is also included in the library.

1. Sketch (http://adafru.it/cnZ) (for the waveHC library (http://adafru.it/aQ7) also check the
WaveHC library zip for any newer revision) (http://adafru.it/aQ7).

PI party!
This example shows how to use the AT&T text-to-speech website to speak the first n digits of
pi. The number is stored in flash, each digit is spoken one at a time.

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 73 of 79

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
http://www.research.att.com/~ttsweb/tts/demo.php#top
http://wiki.laptop.org/go/Sound_samples
http://learn.adafruit.com/system/assets/assets/000/010/334/original/daphc.pde.txt
http://code.google.com/p/wavehc/
http://code.google.com/p/wavehc/

1. Zip file containing the digits 0 thru 9 and 'point' (http://adafru.it/co0) place the wave files
onto the SD card in the root directory.

2. Sketch (http://adafru.it/co1) (for the waveHC library also check the WaveHC library zip for
any newer revision) there's a walkthrough here (http://adafru.it/c0w).

6 buttons, 6 sounds, multiple
possibilities!
Here is a collection of different playback techniques with 6 buttons (connected to analog 0-5).

You can change the # of buttons and what they're wired to easily. This isn't an exhaustive list
but will give you some ideas about how you can do a lot with the WaveHC
library (http://adafru.it/aQ7). Note that all the changes occur in loop(). The button checking and
everything else is the same.

1. Play the wave file all the way through, and only once (http://adafru.it/co2).
2. Play one wave file all the way through, in a loop (http://adafru.it/co3).
3. Play all the pressed wave files all the way through, in a loop (http://adafru.it/co4).
4. Play the wave file only when the button is held down and only once (http://adafru.it/co5)

(kind of like a musical keyboard).
5. Play the wave file only when the button is held down and loop it (http://adafru.it/co6) (kind

of like a sampler keyboard).
6. Play the wave file all the way through and loop it, but allow other buttons to

interrupt (http://adafru.it/co7).
7. Play the wave file all the way through once, but allow other buttons to

interrupt (http://adafru.it/co8).

Playing sound based on input
This similar example plays 6 different files (http://adafru.it/co9) but its for WaveHC
library (http://adafru.it/aQ7) (there's a walkthrough here). (http://adafru.it/c0x)

This one plays 4 different files depending on serial characters (http://adafru.it/coa), good if you
have say an xbee you want to use.

Changing the playback rate
By messing with the playback interrupt, you can change the speed of playback for an
interesting effect (http://adafru.it/c0R).

Here is the sketch (http://adafru.it/coc), connect the potentiometer to analog pin 0 (or change

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 74 of 79

http://learn.adafruit.com/system/assets/assets/000/010/335/original/piwav.zip
http://learn.adafruit.com/system/assets/assets/000/010/336/original/pispeak_hc.pde.txt
http://learn.adafruit.com/audio-shield-for-arduino/wavehc
http://code.google.com/p/wavehc/
http://learn.adafruit.com/system/assets/assets/000/010/342/original/wavehc_play6completeonce.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/343/original/wavehc_play6completeoneloop.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/344/original/wavehc_play6completeallloop.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/345/original/wavehc_play6singlekeyonce.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/346/original/wavehc_play6singlekeyloop.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/347/original/wavehc_play6interloop.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/348/original/wavehc_play6interonce.pde.txt
http://learn.adafruit.com/system/assets/assets/000/010/349/original/wavehc_play6.pde.txt
http://code.google.com/p/wavehc/
http://learn.adafruit.com/audio-shield-for-arduino/wavehc-number-2
http://learn.adafruit.com/system/assets/assets/000/010/350/original/SerialControl.pde.txt
http://www.adafruit.com/blog/2008/05/21/wave-shield-bending-the-playback-sample-rate/
http://learn.adafruit.com/system/assets/assets/000/010/351/original/SampleRateMod.pde.txt

the code).

Wave Shield Voice Changer
Speak like everyone's favorite baritone Sith lord or sing along with the Lollipop
Guild! (http://adafru.it/c0T)

Volume control via software
By changing the #define DVOLUME 1 in wave.cpp and recompiling you can do rudimentary
software volume control as in this sketch (http://adafru.it/cod).

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 75 of 79

http://learn.adafruit.com/wave-shield-voice-changer/
http://learn.adafruit.com/system/assets/assets/000/010/352/original/SoftVolumeChange.pde.txt

Downloads

Arduino WaveHC Library
Newer! Better! Sparklier! (http://adafru.it/aQ7)

For information how to use and install libraries, see our tutorial! (http://adafru.it/aYG) Then
check out the examples (http://adafru.it/c0y) for how to use it.

This library pretty much requires a '328 Arduino, see our upgrade tutorial if you have a '168
Arduino (http://adafru.it/c0B).

Arduino AF_Wave library
 This library is no longer supported, but I'm keeping it here for history sake - please use

only WaveHC above!

Download the latest library here (http://adafru.it/cmC) (currently: Feb 18, 2008 which now
supports the 328P and arduino v13 under mac and windows & probably linux).

For information how to use and install libraries, see our tutorial! (http://adafru.it/aYG) Then
check out the examples (http://adafru.it/c0y) for how to use it.

Before you try to play audio, you'll want to free up some Arduino RAM, so that you don't end up
with a nasty stack-overflow. Follow these instructions (http://adafru.it/c0W) on how to get more
RAM by reducing the input Serial library buffer.

The library is based off of Roland Riegel's AVR FAT16 code (http://adafru.it/c0X), but pared
down quite a bit to reduce flash and RAM usage. There are also some strange optimizations to
make it play audio better.

Demo waves
If you need some audio to test with, here is a synthesized voice saying "Hello
world." (http://adafru.it/cmD)

Here is the collection of numbers for the pispeak example! (http://adafru.it/cmE)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 76 of 79

http://code.google.com/p/wavehc/
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries
http://learn.adafruit.com/audio-shield-for-arduino/examples
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/upgrade
http://learn.adafruit.com/system/assets/assets/000/010/160/original/AFWave_18-02-09.zip
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries
http://learn.adafruit.com/audio-shield-for-arduino/examples
http://www.adafruit.com/blog/?main_page=blog
http://www.roland-riegel.de/sd-reader/index.html
http://learn.adafruit.com/system/assets/assets/000/010/161/original/helloworld.wav
http://learn.adafruit.com/system/assets/assets/000/010/162/original/piwav.zip

Schematics & Layout
1. Schematics for v1.1 in PNG format (http://adafru.it/cmF)
2. v1.1 Schematics (http://adafru.it/cmG) and board layout (http://adafru.it/cmH) in

EagleCAD format
3. Schematics for v1.0 in PNG format (http://adafru.it/cmI)
4. v1.0 Schematics (http://adafru.it/cmJ) and board layout (http://adafru.it/cmK) in EagleCAD

format

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 77 of 79

http://learn.adafruit.com/system/assets/assets/000/010/163/original/wave11schem.png
http://learn.adafruit.com/system/assets/assets/000/010/164/original/waveshield11.sch
http://learn.adafruit.com/system/assets/assets/000/010/165/original/waveshield11.brd
http://learn.adafruit.com/system/assets/assets/000/010/166/original/waveshield10schem.png
http://learn.adafruit.com/system/assets/assets/000/010/167/original/waveshield10.sch
http://learn.adafruit.com/system/assets/assets/000/010/168/original/waveshield10.brd

Buy Kit
Buy Kit (http://adafru.it/aIH)

© Adafruit Industries https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino Page 78 of 79

http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&products_id=94

Forums
Forums (http://adafru.it/aOM)

© Adafruit Industries Last Updated: 2014-04-17 09:00:21 AM EDT Page 79 of 79

http://forums.ladyada.net/

	Guide Contents
	Overview
	Ideas for what you can use it for...

	FAQ
	Design
	Overview
	Voltage regulator
	SD/MMC card holder
	The microcontroller/Arduino
	DAC
	Analog output

	Make it!
	Steps

	Preparation
	Prep
	Tools

	Parts
	Parts list for version 1.1 only!
	Parts list for version 1.0 ONLY

	Solder
	These are instructions for version 1.1 of the kit!
	Make it

	Use it!
	How to use it

	SD Card
	Introduction
	Formatting under Windows/Mac

	Convert files
	Intro
	Check the file
	Option 1. Use iTunes
	Option 2. Use SoX
	Option 3. Use Audacity
	Step 3. Start up Audacity and open the file
	Step 4. Split and Mix a stereo track
	Step 5. Convert to 16 bit audio
	Step 6. Convert to 22-KHz or less
	Step 7. Prepare to export
	Step 8. Export!

	waveHC Library
	Get more RAM & Flash!
	A tour of dap_hc.pde
	Initialize the card
	Looking for files in a directory
	Playing all the files
	dap_hc.pde

	The Play6_HC Example
	Get more RAM & Flash!
	A tour of play6_hc.pde
	Initialize the card
	Button interfacing
	Playcomplete & Playfile
	play6_hc.pde

	AFwave Lib.
	DISCONTINUED!
	Get more RAM & Flash!
	A tour of the AF_Wave library
	Initialize the card
	Looking for files
	Opening a file for playing
	Playing the file
	Closing the file
	Changing sample rate
	Saving & restoring the play position
	Volume adjust

	Examples
	Getting Stack overflow errors?
	Get more RAM & Flash!
	Generating speech
	Sound sample library
	Digital audio player
	PI party!
	6 buttons, 6 sounds, multiple possibilities!
	Playing sound based on input
	Changing the playback rate
	Wave Shield Voice Changer
	Volume control via software

	Downloads
	Arduino WaveHC Library
	Arduino AF_Wave library
	Demo waves
	Schematics & Layout
	Buy Kit
	Forums

